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ABSTRACT

In a previous presentation at PerMIS’02, we described a
methodology to assess image processing algorithms dedicated
to unstructured road detection and tracking. In this paper, we
present our first application of this methodology on six algo-
rithms using a database containing about 20,000 images. The
main scope of this article consists in presenting the results and
the lessons learned from this evaluation.
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1 INTRODUCTION

Since the beginning of the 1990’s, the French defense pro-
curement agency (Délégation Générale pour I’Armement)
has launched several advanced studies dedicated to ground
robotics. Among them, the prospective program called
PEA Robotique, which started in December 1999, aims
at developing a generic teleoperation kit as well as au-
tonomous functions for military unmanned vehicle naviga-
tion, such as autonomous road following, beacon or vehi-
cle tracking and scene analysis. In this context, the Cen-
tre Technique d’Arcueil (CTA) of the Délégation Générale
pour Armement (DGA) is currently conducting an eval-
uation of six existing image processing algorithms for un-
structured road detection and tracking. The goal of this
evaluation is to compare different road detection and track-
ing algorithms in a reproducible and quantitative way so as
to direct future developments in autonomous outdoor navi-
gation. It should allow us to determine the most promising
techniques and possibly find orthogonal strengths between
the algorithms so as to conceive hybrid and potentially
more efficient methods. Moreover, it should help us to
quantify the performances that need to be reached by fu-
ture algorithms.

The outcome of the evaluation is described in the fol-
lowing sections. Section 2 briefly recalls existing assess-
ment methodologies for image processing algorithms, as
well as previous work on the evaluation of road tracking
algorithms. Section 3 describes our assessment method-

ology and section 4 presents some results of the evalua-
tion for the road tracking algorithms. Section 5 explains
how the assessment results can be used for further devel-
opments and section 6 focuses on lessons learned about the
whole evaluation process. Finally, section 7 concludes and
outlines future developments.

2 PREVIOUS
TION

WORK ON EVALUA-

In the last years, the image processing community has
started to develop evaluation methods in order to be able
to compare quantitatively the huge number of algorithms
available after these last decades of research. Such an ap-
proach is very important for those who use image process-
ing as a part of their research, like roboticists, since it
provides a guide based on performance among the over-
whelming number of available algorithms. However, it
should be noted that such an approach is quite new. Up
to very recently, algorithms were not evaluated quantita-
tively, but only qualitatively on various criteria such as the
neatness of their design or the sophistication of the under-
lying mathematical theoretical tools. Most experiments
are conducted by human experts and lack any automa-
tion. The performance of the algorithms then depends on
the know-how and the personal experience of the expert.
Fortunately, the situation is changing and there are always
more special issues in journals or conferences focusing on
image processing assessment issues.

Although a wide variety of vision-based road following
algorithms have been proposed and implemented over the
last two decades, few techniques have been developed to
assess their quality. Far too many articles rely on quali-
tative results, exhibiting a handful of example images to
illustrate the performance of the algorithms while real ap-
plications would mean processing millions of image without
making any serious error [9]. In many cases, the efficiency
of road following algorithms is only characterized by the
speed achieved by the whole autonomous system or the
time elapsed between two manual interventions [1]. How-
ever, using such global characterizations, it seems difficult
to determine exactly what makes the system efficient and



Figure 1: Examples of road images of the DGA testing facilities near Angers.

what could be improved to make it better. Algorithms
performing 3-D road reconstruction have been evaluated in
different ways: indirect numerical tests comparing real and
estimated road width and vehicle speed [6], task-oriented
metrics using ground truth on both synthetic and real data
[2], etc. However, manual 3-D reconstruction appears too
time-consuming if the evaluation is to be performed on
numerous data. A few research studies focus on automat-
ing the measurement of ground truth for the evaluation of
vision-based lane sensing : development of a specific de-
vice (a side-looking camera and a separate vision system)
to measure the offset between the vehicle and the lane [7],
simulation of various precipitation rates on real data using
a detailed calibration of the imaging system [5], etc. Fi-
nally, a few studies select only a well-defined aspect of the
system performance in a single class of lane-sensing tech-
niques to enable the automatic extraction of the ground
truth in a well-defined and simple context [9] (see [3] for a
more detailed description of assessment methodologies of
road tracking algorithms).

3 ASSESSMENT
AND TOOLS

METHODOLOGY

Given the variety of algorithms to be tested, the assess-
ment methodology has to be flexible and generic enough.
We have opted for an evaluation based on a ground truth,
which implies the use of an image sequence database as-
sociated with the corresponding ground truth. Moreover,
since we aim at a quantitative evaluation, we had to de-
velop several metrics in order to measure and compare the
performances of the different algorithms.

The database includes both the images that compose
the input of the image processing algorithms and the
ground truth suited to the final task to assess. For our pur-
pose, we needed images of ill-structured roads and trails
taken from a vehicle whose size and mobility are close to
the targeted UGV. Collecting these images is quite easy
with nowadays technologies. The two main difficulties are
related to the representativity of the images with respect
to the missions and the environment of the UGV, and the
constitution of the ground truth. To address the first is-
sue, we specified two kinds of scenarios: six general ones

presenting an increasing difficulty level for road extraction
and twelve special scenarios which are dedicated to road
particularities. In the first case, one obtains homogeneous
sequences of images in order to assess an algorithm along a
sequence with a low risk of an irreparable failure on some
images. Two categories of roads have been defined, each
corresponding to three scenarios: tarmac roads and gravel-
mud roads. For each category, three levels of difficulty have
been determined. In the second case, the special scenarios
make it possible to evaluate the algorithm in harsh con-
ditions (hairpin bends on different kinds of soil, abrupt
road widening, puddles, slough, road sides with parked
vehicles, changing soil, transversal and longitudinal ”dis-
turbing” road markings, sequences where the vehicle en-
ters or leaves the road, etc.). Moreover, each general sce-
nario was recorded under three different illumination and
weather conditions. This process lead to a first version of
the database containing around 20,000 images. Besides, to
deal with the constitution of the ground truth, we wrote a
detailed specification which guides the human operator in
charge of drawing the road boundaries in each image. In
order to facilitate this long and dull job, we also created
a program with a dedicated interface which speeds up the
ground truth definition process. Broadly speaking, it man-
ages the name and numbering conventions of the images
and ground truth files of a sequence and allows, on a new
image, an easy modification of the ground truth defined on
the previous image.

Numerous authors underlined the need for multiple met-
rics in image processing algorithms assessment, so that
users can consider different aspects of these algorithms and
choose the one which is best suited to their application
[8]. Following this point of view, we propose nine different
metrics, computed in the 2-D image space, which aim at
assessing geometric accuracy as well as a good global corre-
spondence between the ground truth and the output of the
algorithms. Among the various metrics available, we can
distinguish contour-oriented and region-oriented metrics,
which reflect the dual approaches to image segmentation
(see Fig. 2 for the notations). Before computing most
contour-oriented metrics, we need to perform a matching
procedure between the reference road edge and the result of
the algorithm. We chose the so-called ”buffer method” in
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Figure 2: Notations for metrics.

which every portion of the boundary lying within a certain
distance (i.e. the width of the buffer) from the reference
boundary is considered as matched.

The two first contour-oriented metrics count up the
number of pixels which have been misclassified: the com-
pleteness metric (my; = BC/AD) computes the difference
between the length of the result judged as valid (within
the tolerance buffer) and the length of the ground truth,
while the correction metric (my = GF/GE) determines
what portion of a result lies within the tolerance area.
We also define a combination of the previous metrics:
mz = my X my. m1, me and mgz equal 1 when the result is
perfect for each metric. The fourth contour-oriented metric
my = SEdist(algorithm, ground truth) /length(GE) com-
putes the average distance between the reference and re-
sult edges. my4 equals 0 when the result is perfect for this
metric. We have added a signed distance metric (mg4, =
Y E signed-horizontal-distance(algorithm, ground  truth))
which is not symmetrical with respect to the road edges.
mys makes it possible to determine whether the algorithm
is rather optimistic (the edges tend to be detected out-
side the road surface) or pessimistic (the edges are mostly
detected inside the road surface). Using both the right
and left edges, it also enables to compare the result and
reference central road axes. Contour-oriented metrics pro-
vide detailed information about the geometric accuracy of
the algorithms. However, in sharp turns or on very ir-
regular paths, pessimistic algorithms using a very simple
model (a triangle for instance) risk being severely penal-
ized by these metrics even if they find a driveable area
within the boundaries of the real road. As a result, we
have defined two other metrics based on surface, which
measure the frequency of incorrect classification of pixels in
the image. The first one is related to completeness (ms =
|Sresult n Sground truthl/'Sground truth|) and the second one

to correctness (m()' = |Sresult nSg’round t’ruth|/|S’result|)-
Finally, we define two additional combinations of metrics:

my = my X mg and mg = mg X my. ms, Mg, my and mg
equal 1 when the result is perfect for each metric.

The computation of the metrics given the algorithms
and the database is performed automatically using the

SENA platform which was developed by Cril Ingenierie
under CTA specification and supervision. SENA is a cus-
tomized software environment for fast algorithm imple-
mentation and evaluation of a wide range of applications.
It helps in assembling image processing operators and re-
playing the experiments on large amounts of images. It
makes it possible to incorporate tools into the operator
sequence in order to measure or visualize partial results.
Thus, SENA is able to organize and execute sequences of
operators of different types (source code, shell scripts, bi-
naries, libraries) and origins (operators which were devel-
oped specifically for the platform or not). The only con-
straint is that all the operators must be executed on the
same host computer. Practically, SENA runs on an SMP
computer (Sun Enterprise 10,000 with 32 processors) to
cope with the huge amounts of data and range variations
of the algorithm parameters (see [3] for a more detailed
description of the whole evaluation methodology).

4 SOME RESULTS

A public consultation enabled us to acquire six existing
algorithms developed either by French laboratories (LAS-
MEA, LCPC, MINES, CTA) or by French companies
(PG:ES). To perform their road-tracking task, these al-
gorithms rely on various strategies (see table 1 for a global
description and [4] for more details). Some of them resort
to edge detection, others to region classification, and one
of them combines both techniques. They operate either on
gray-level or on color images. The 2-D geometric models
of the road range from triangles or simple straight lines to
parabolas and polygonal edges.

Some algorithms depend on different parameters: for
instance, the first algorithm from the LASMEA relies on
a Mahalanobis distance threshold. To tune these parame-
ters, we have used a single surface metric which computes
the percentage of pixels which have been misclassified :
mg = 1- 2|’“'9’7q:es11,lt ﬂ S;round truth|/|s17:esult + S;round truth|
where S” is the surface restrited between 0.6 and 0.8 heigth
of the image. This measure concentrate on the most im-
portant part of the image that is not too close to the vehicle



Road model Road extraction strategy

LASMEA 1 2 straight line Supervised gray-level classification of the image using a
segments ; road road prototype extracted from the previous image. Median
width, lateral position | least square technique to determine the road edges.
of the vehicle Kalman filter to estimate 4 position parameters.

LASMEA 2 Polygonal edges (9 Kalman filtering to estimate the abscises of each vertex.
vertices on each side Road segments are extracted by a median least square technique.
at fixed heights) At each image, a hypothesis tree enables to select successively

the best observations to update the road estimate.

LCPC 2 straight line Unsupervised monodimensional classification based on
segments (end points | chromatic saturation and thresholding. Extraction of
at fixed heights) the road edges by a median least square method.

MINES 2 straight line Mathematical morphology : watershed segmentation on a color

Fontainebleau | segments gradient image, with different levels of hierarchy. Exploitation

of temporal consistence throughout the sequence.

PG:ES Triangular model Variant of the classical SCARF algorithm from CMU.

Supervised color image classification with two road
classes ("sunny” and "not sunny”).

CTA Polygonal edges Variant of the LASMEA 2 algorithm alternating color and

texture segmentation with an edge detection step.

Table 1: General description of the six algorithms involved in the assessment.

nor to the horizon. It provides a unique result that is well
suited for error minimization.

The metrics have been computed on each image for ev-
ery algorithm, which provides eight curbs (or more if we
distinguish the right edge from the left edge) for each im-
age sequence. Scalar measures can also be derived from
these curbs, considering for instance the minimum, max-
imum and mean values as well as the variance over the
whole sequence. Therefore, the amount of results is huge
and we will only describe significant results that illustrate
the analysis.

The examination of these various results enables us to
outline general tendencies for each algorithm. Among the
various metrics available, my; appears as a useful tool to get
general indications about the behavior of an algorithm (in-
deed, global metric myg is often close to zero). For instance,
metric my clearly shows that some algorithms present fre-
quent failures but are able to recover from difficult situ-
ations while others tend to provide very reliable results
but sometimes suffer from irreparable failures. Metric my
is also interesting to evaluate the average precision of the
algorithms and makes it possible to identify the images
where the algorithms face difficulties. However, when an
edge has not been detected by the algorithm, m, is arbi-
trarily set to the length of the image diagonal in order to
penalize this result (this appends in Table 2).

Other metrics enable us to determine promising ap-
proaches among the algorithms. Some algorithms seem
to be specifically tuned for one environmental condition
while others tend to perform well on most sequences.

The various results also help us to underline complemen-

tary assets between the algorithms and to consider possible
hybridations among the different techniques. For instance,
one algorithm is a variant of a contour-oriented technique
in which color and texture information has been added :
the good results obtained by this new variant compared
to the initial algorithm indicate that the fusion between
contour-oriented and region-oriented techniques is proba-
bly a promising approach.

So far, the evaluation has been performed on four algo-
rithms, namely the algorithms proposed by the LASMEA,
the MINES and the CTA. Each algorithm has been tested
on six general scenarios under three different weather con-
ditions (sunny, cloudy and rainy). The metrics have been
computed on each image for every algorithm, which pro-
vides 8 curbs (or more if we distinguish the right edge from
the left edge) for each image sequence (see Fig. 3 for in-
stance). Scalar measures can also be derived from these
curbs, considering for instance the minimum, maximum
and mean values as well as the variance over the whole
sequence. Therefore, the amount of results is huge and we
will only present a few significant results that illustrate the
analysis (see Table 2 for instance).

The examination of these various results enables us to
outline general tendencies for each algorithm:

e Among the selected approaches, the technique devel-
oped by the MINES globally yields the best results
on scenario 4 (easy gravel road). Otherwise, it pro-
vides average results on most scenes. As shown in
Fig. 3 for instance, although it presents frequent fail-
ures, it is able to recover from difficult situations: the
metric periodically decreases to very low values be-



Algorithm mg right my right mg left my left my mg
LASMEA 1 | 0.211 £ 0.017 | 32.46 £+ 3.243 | 0.029 £ 0.005 | 61.97 &+ 3.269 | 0.786 + 0.010 | 0.006 &+ 0.001
LASMEA 2 | 0.148 £ 0.008 | 86.95 + 4.114 | 0.065 £+ 0.005 | 52.04 & 1.835 | 0.641 &+ 0.008 | 0.008 £ 0.001
MINES 0.104 £ 0.006 | 84502 &+ 7657 | 0.050 £ 0.004 | 87000 £ 7716 | 0.7143 £ 0.007 | 0.003 £ 0.0005
CTA 0.142 £ 0.009 | 38.80 + 1.86 | 0.115 &+ 0.0086 | 56.88 £ 2.4 | 0.78 & 0.0059 | 0.017 &+ 0.0021

Table 2: Measure mg, my4, m7 and mg for sequence S5 cloudy

fore reaching an acceptable level again. This ability is
probably induced by the failure test (based on a coin-
cidence between prediction and estimation) which has
been incorporated into the algorithm, thus activating
a new initialization step whenever necessary.

e The first algorithm proposed by the LASMEA expe-
riences trouble and seems to be the less reliable on
most image sequences, except on the sunny sequence
derived from scenario 4. Therefore, one can wonder
whether the main parameter (the Mahalanobis thresh-
old) was not specifically tuned for this kind of se-
quence. This behavior will be further investigated by
studying the sensitivity of the algorithms to parame-
ter tuning.

e The second algorithm developed by the LASMEA
globally provides results which are similar to the algo-
rithm proposed by the MINES. It experiences frequent
failures as well (see Fig. 3), although these failures ap-
pear slightly less severe than those from the MINES.
It is also capable of recovering from most failures. In
this case too, it seems to be worth studying the effects
of parameter variations.

e Finally, the approach proposed by the CTA tends to
provide the best global results, although it often suf-
fers from irreparable failures. These failures some-
times derive from a “segmentation fault” which may
be due to an attempt to inverse a non-invertible ma-
trix in the Kalman filter process. Another kind of fail-
ure simply leads to a progressive deviation of the road
detection result away from the ground truth (see Fig. 3
for instance). Moreover, the results tend to show that
a compromise has to be found between the rigidity
(both in the temporal and geometric sense) and the
stability of road model. Indeed, the CTA road tem-
plate is sometimes too rigid to cope with abrupt bends
and it cannot deal with “S”-shaped roads. However,
when the road presents a classical shape, this rigidity
seems to help it to ajust to the template. Similarly,
the temporal stiffness of the road template (probably
due to the Kalman filtering) prevents the algorithm
from limiting the progressive deviation away from the
real road edges.

The various results also help us to underline complemen-
tary assets between the algorithms and to consider possible

hybridations among the different techniques. For instance,
the CTA approach is basically a variant of the second LAS-
MEA algorithm in which color and texture information has
been added to contour-oriented techniques. Therefore, the
good results obtained with the CTA algorithm compared
to the original one tend to indicate that the fusion be-
tween contour-oriented and region-oriented techniques is
a promising approach. Besides, it seems that the CTA
algorithm could be improved using failure detection tests

or recovering capabilities such as those developed by the
MINES and the LASMEA.

5 EXPLOITATION OF THE RESULTS

As pointed out before, we have opted for a generic ap-
proach which makes it possible to evaluate very dissimilar
algorithms relying both on various strategies and on very
different road models. Moreover, the choice of the metrics
also meets a genericity requirement so that the evaluation
results can be used to select the best suited road detector
whatever the final task or the command rules which en-
able the UGV to follow the road. However, even though
the metrics help to reduce the initial data space (scalar
measures on each image or on sequences with respect to
reference road edges and algorithm results on each image),
such a generic evaluation still provides numerous results to
be exploited.

It should first be noted that the assessment results can
be exploited at different levels, which enables us to adapt
the amount of data to examine. Indeed, as shown in the
previous section, the interpretation can be conducted at
various levels:

e on different sets of images : the whole database, only
general or special scenarios, easy or difficult scenes, a
particular sequence or a given image, etc. ;

e using single or multiple metrics ;

e considering individual algorithms or comparing sev-
eral ones.

It thus makes it possible to determine the strengths, weak-
nesses and complementarities between the algorithms at
different levels.

Moreover, once the task is more precisely defined or
if the command rules are given, we can select the most
promising road tracking algorithms by choosing the most
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Figure 3: Measure mz, sequence S5 cloudy for LASMEA 2 (left), MINES (center) and CTA (right).

relevant metric or combination of metrics for the task. We
believe that the existing metrics already provide very use-
ful information, so that in most cases, it would not be
necessary to start the evaluation all over again, using met-
rics specifically designed for the task. To illustrate this
idea, we propose the few following examples:

o If the aim of the system is simply to follow the road by
staying on the central axis, we do not really care about
the precision of the edge detection. What really mat-
ters is that the central road axis should be correctly
recovered, so that the signed metric m45 seems to be
a good candidate

If the system is dedicated to vehicle following while
checking that it remains on a ”navigable” area, the
main concern is to detect the whole road surface. As
a result, we tend to favor completeness, as well as cor-
rectness (to avoid the roadsides which are potentially
dangerous).

If the system aims at following a single road edge (for
example if the vehicle needs to remain on the right
lane to avoid vehicles coming from the opposite di-
rection), the ”buffer” metrics seem better suited than
the surface metrics. As for the distance metrics, they
may be too sensitive to small variations of the edge po-
sition (which cannot be detected correctly when the
road models are too rigid).

o If the goal of the system is to detect the road edges
with a good precision (for instance to determine how
structured the road is, to analyze its quality or to
determine the nature of the roadsides), the distance
metrics seem to be the most relevant.

Furthermore, depending on whether the algorithms use re-
gion classification or edge detection, the use of correspond-
ing surface-oriented or edge-oriented metrics may seem
more natural.

Finally, we have seen that we can mimic human judge-
ment by describing the algorithms as rather pessimistic or
optimistic. We could go still further by fully automating
the human judgement (to compare multiple variant of the
same algorithm for example). In particular, this approach
looks interesting in the case of a warning system that would
raise on alarm if a pilot or a teleoperator tended to leave
the ”navigable” area. Indeed the most relevant quality
metric for such a warning system might then be the human
judgement itself. In the field of photo-interpretation, Le-
tournel has defined a ” qualitative objective metric” which
meets such requirements. Indeed, this new kind of metric
links numerical values (the objective quantitative metrics)
with a semantic classification of the outcome of the algo-
rithms (the human judgement) [10]. In her PhD thesis,
this metric was dedicated to building extraction in aerial
images but the metric definition could be adapted to road
detection. The main steps then consist in :

e selecting significant images from the database and sig-
nificant results of the algorithms on these images (
good , bad and average results) ;

collecting marks from human evaluators ;

performing principal components analysis to reduce
the initial metrics space (m1, ma, ma, mys, ms and
me for instance) ;

building performance measures that reflect the human
judgement. The first method relies on statistical anal-
ysis (canonical analysis) to select an optimal subset
of features corresponding to the human notation and
builds a similarity measure which is a linear combi-
nation of metrics. The second method relies on fuzzy
logic to select a new subset of metrics and build a new
similarity measure.



e Both similarity measures can be combined to propose
a final performance measure that discriminates be-
tween good and bad segmentations.

It should be noted that these qualitative objective metrics
can be computed using our initial ”quantitative” metrics
results, so that no new quantitative comparison between
the reference and result edges is needed.

6 LESSONS LEARNED ABOUT THE
ASSESSMENT METHODOLOGY

6.1 Constitution of the database

First, this evaluation allowed us to gain insight about the
constitution of the database:

e It turned out extremely difficult to find areas on the
proving ground that could satisfy simultaneously all
the requirements for the scenarios. In particular, most
roads presented numerous intersections and other dif-
ficulties, which was to be avoided for the ”easy” sce-
narios. Therefore, it may be useful to plan the image
acquisition on a very large area containing numerous
and various kinds of roads, or to share out this acqui-
sition among different participants.

e As described above, the CTA has developed a dedi-
cated interface to facilitate the ground truth marking
by the human expert. Although this interface seems
very useful, several possible improvements have been
identified. For instance, it seems interesting to display
simultaneously the current and the previous image, so
that the operator can define vertices for the polygo-
nal lines that always correspond to the same points in
the scene. Moreover, to accelerate the ground truth
definition process, it would be helpful to use a ref-
erence algorithm which could be manually controlled
and stopped (as currently investigated by the NIST).

e Finally, it seems interesting to split the database into
two or three parts: a learning database and a de-
velopment database with ground truth could be used
by the laboratories to train and test their algorithms,
whereas an evaluation database would be dedicated to
the final assessment. In the scope of our study, such
an approach was not required since the algorithms did
not need an extensive training, but it should be taken
into account for further extensions.

6.2 Lessons learned about the choice of the
metrics

We also learned a few lessons about the metrics:

e In section 4, we have already described the assets and
limitations of some metrics. More generally:

— The ”buffer” metrics m; and ms tell how valid
the detected road edges are, whatever the slight
variations in the precision. However, they do not
indicate the directions of errors.

— The surface metrics ms and mg outline general
tendencies for the algorithms (they seem more
stable than the edge metrics [3]) and may pro-
vide global indications about the direction of er-
rors in some cases. However, they are sensitive
to slight variations of the edge localization and
cannot distinguish between right and left edges.

— The unsigned distance metric m4 points out the
images where the algorithm fails and provides in-
formation about the precision. However, it does
not indicate the type of error (false positive /
false negative or pessimistic / optimistic).

— As for the signed metric myy, it can determine
the offset for the central axis of the road and
combined to my, it may show the direction of the
offset on each road edge. However, since positive
and negative errors compensate for each other,
the mean offset value is not significant with the
signed metric.

e Some metrics had to be slightly modified in order to

cope with the large variety of algorithms. In partic-
ular, some techniques consider a fixed horizon, which
induced a systematic error on the completeness met-
rics within the upper part of the road. As a result, we
introduced a weighted sum into the distance metrics
(m4 and mys) so as to favor the lower part of the im-
age and enable a more consistent comparison between
the different algorithms.

It seems interesting to define temporal metrics that
would take into account the temporal consistence of
the road detection between two consecutive images
(so that the offset between the reference and the re-
sult remains on the same side, for instance). Global
temporal metrics could be computed using the exist-
ing static ones (mys for instance) but more precise
metrics might require new computations.

Some metrics depend on parameters: for instance,
the width of the tolerance buffer can be modified.
In the current evaluation, it was set quite arbitrarily
to 12 pixels, taking into account the precision of the
ground truth (5 pixels) and adding a few pixels to al-
low slight variations for the algorithm. However, this
width could be set more rigorously, studying the im-
pact of an error in the image processing results on the
control algorithms for the UGV for instance (which
implies that to remain generic, the evaluation needs
to be performed for different values of this width).

It would be interesting to study the metric behaviors
more thoroughly. At first, we could globally examine



their variations (compute the histograms and varia-
tion coefficients over the database). We could also
analyze their correlation in an attempt to reduce the
metric space [10]. Finally, we could study analytically
the sensitivity of these metrics. However, this still
looks quite difficult to formalize.

6.3 Lessons learned about the whole
methodology

Since we decided to perform the evaluation using binaries
provided by the laboratories, it sometimes turned out dif-
ficult to solve small practical problems when running the
algorithms, which appeared as mysterious black boxes. An
alternate solution would consist in sending the database
images (without the ground truth) to the laboratories and
let them compute the results themselves, taking advantage
of potential dedicated hardware. However, this would al-
low the participants to tune their algorithms on the image
sequences and might introduce biases on the assessment
(even though in some cases, these biases could eventually
be detected). To tackle this problem, one could imagine
sending the images through internet and allowing only a
very short time for the laboratories to send their results
back. However, if this approach is widespread in the speech
processing community, it seems more difficult to apply to
image sequences which represent huge amounts of data and
might saturate the networks.

7 CONCLUSION

This article describes the results of a quantitative perfor-
mance evaluation concerning road detection and tracking
algorithms. It also presents the lessons we learned about
the assessment methodology, especially about the database
constitution and the metrics definition. It is true that this
kind of evaluation, which only takes into account the image
processing task, cannot replace a global system evaluation
: in particular, for an automatic road following task, other
elements from the intelligent vehicle need to be assessed,
such as the command and control strategy. However, the
methodology we propose can also take into account exter-
nal elements such as the use of other kinds and sensors,
the use of 3-D vehicle models that take advantage of pro-
prioceptive information, etc. Indeed, the contribution of
these external elements to the image processing task can
be measured quantitatively, these external data or models
being often used to guide the vision algorithms.

To conclude, our first results applying the methodol-
ogy look very encouraging. Despite the slight adaptations
to the metrics, we succeeded in understanding the general
behaviors of the road detectors. Therefore, after this first
experience, we believe that it would be worth making this
kind of evaluation more systematic. Indeed, in the develop-
ment phase of an algorithm, such tests make it possible to
orient the design choices, for instance by comparing pairs

of approaches that would only differ by a single element
(the geometric road template for example). The definition
of modular algorithms would also help testing variants in
this prototyping process. In the evaluation phase, such a
methodology enables to test quite rigorously the contri-
bution of the new algorithm with respect to existing ap-
proaches. Moreover, a systematic evaluation would help
standardizing the input and output formats for the algo-
rithms, which would make the evaluation process easier.
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